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Abstract. In this addendum, the(q, h)-analogue of Newton’s binomial formula is obtained in the
(q, h)-deformed quantum plane which reduces forh = 0 to theq-analogue. For(q = 1, h = 0),
this is just the usual one as it should be. Moreover, theh-analogue is recovered forq = 1.
Some properties of the(q, h)-binomial coefficients are also given. This result will contribute to
an introduction of the(q, h)-analogue of the well known functions,(q, h)-special functions and
(q, h)-deformed analysis.

Theq-analysis is an extension of the ordinary analysis, by the addition of an extra parameter
q. Whenq tends towards one the usual analysis is recovered. Suchq-analysis appeared in
the literature a long time ago ‡. In particular, aq-analogue of Newton’s binomial formula,
well known functions likeq-exponential,q-logarithm,. . . etc, the special functions arena’s
q-differentiation andq-integration have been introduced and studied intensively.

In [2], theh-analogue of Newton’s binomial formula was introduced leading, therefore,
to a new analysis, calledh-analysis. In this addendum, I will go a step further by generalizing
the work [2]. Indeed, an analogue of Newton’s binomial formula is introduced here in the
(q, h)-deformed quantum plane (i.e.(q, h) Newton’s binomial formula which generalizes
Scḧutzenberger’s formula [3] with an extra parameterh) leading, therefore, to a more
generalized analysis, called(q, h)-analysis. With this generalization, theq-analysis,h-analysis
and ordinary analysis are recovered respectively by takingh = 0, q = 1 and(q = 1, h = 0).

Newton’s binomial formula is defined as follows:

(x + y)n =
n∑
k=0

(
n

k

)
ykxn−k (1)

where
(
n

k

) = n!
k!(n−k)! and it is understood here that the coordinate variablesx andy commute,

i.e. xy = yx. A q-analogue of (1), for theq-commuting coordinatesx and y satisfying
xy = qyx, first appeared in literature in Schützenberger [3], see also Cigler [4],

(x + y)n =
n∑
k=0

[
n

k

]
q

ykxn−k (2)

where theq-binomial coefficient is given by[
n

k

]
q

= [n]q !

[k]q ![n− k]q !
† E-mail address:benaoum@thep.physik.uni-mainz.de
‡ For historical details see [1]

0305-4470/99/102037+04$19.50 © 1999 IOP Publishing Ltd 2037



2038 H B Benaoum

with

[j ]q = 1− qj
1− q .

Theh-analogue has been introduced and defined in [2] as follows:

(x + y)n =
n∑
k=0

[
n

k

]
h

ykxn−k (3)

provided thatx andy satisfy to [x, y] = hy2 and theh-binomial coefficient

[
n

k

]
h

is given by[
n

k

]
h

=
(
n

k

)
hk(h−1)k (4)

where(a)k = 0(a + k)/0(a) is the shifted factorial.
Now consider Manin’sq-planex ′y ′ = qy ′x ′. By the following linear transformation (see

[5] and references therein):(
x ′

y ′

)
=
(

1 h
q−1

0 1

)(
x

y

)
Manin’sq-plane changes to

xy = qyx + hy2. (5)

Even though the linear transformation is singular forq = 1, the resulting quantum plane is
well-defined.

Proposition 1. Letx andy be coordinate variables satisfying (5), then the following identities
are true:

xky =
k∑
r=0

[k]q !

[k − r]q ! q
k−rhryr+1xk−r

xyk = qkykx + h [k]q y
k+1.

(6)

These identities are easily proved by successive use of (5).

Proposition 2 ((q,h)-binomial formula)). Letx andy be coordinate variables satisfying (5),
then we have

(x + y)n =
n∑
k=0

[
n

k

]
(q,h)

ykxn−k (7)

where

[
n

k

]
(q,h)

are the(q, h)-binomial coefficients given as follows:[
n

k

]
(q,h)

=
[
n

k

]
q

hk(h−1)[k] (8)

with

[
n

0

]
(q,h)

= 1 and

(a)[k] =
k−1∏
j=0

(a + [j ]q) (9)

since by definition[0]q = 0.
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Proof. This proposition will be proved by recurrence. Indeed forn = 1, 2, it is verified.
Suppose now that the formula is true forn− 1, which means

(x + y)n−1 =
n−1∑
k=0

[
n− 1
k

]
(q,h)

ykxn−1−k

with

[
n− 1

0

]
(q,h)

= 1. To show this forn, let us first consider the following expansion:

(x + y)n =
n∑
k=0

Cn,ky
kxn−k

whereCn,k are coefficients depending onq andh.
Then, we have

(x + y)n = (x + y)(x + y)n−1 = (x + y)
n−1∑
k=0

[
n− 1
k

]
(q,h)

ykxn−1−k

=
n−1∑
k=0

[
n− 1
k

]
(q,h)

xykxn−1−k +
n−1∑
k=0

[
n− 1
k

]
(q,h)

yk+1xn−1−k.

Using the result of the first proposition, we obtain

(x + y)n =
[
n− 1

0

]
(q,h)

+
n−1∑
k=1

[
n− 1
k

]
(q,h)

qkykxn−k

+
n−1∑
k=1

[
n− 1
k

]
(q,h)

(1 +h[k]q)y
k+1xn−1−k +

[
n− 1

0

]
(q,h)

yxn−1

which yields, respectively,

Cn,0 =
[
n− 1

0

]
(q,h)

= 1

Cn,1 = q
[
n− 1

1

]
(q,h)

+

[
n− 1

0

]
(q,h)

=
[
n

1

]
(q,h)

Cn,k = qk
[
n− 1
k

]
(q,h)

+ (1 +h[k − 1]q)

[
n− 1
k − 1

]
(q,h)

=
[
n

k

]
(q,h)

Cn,n = (1 +h[n− 1]q)

[
n− 1
n− 1

]
(q,h)

=
[
n

n

]
(q,h)

.

�
Moreover, the(q, h)-binomial coefficients obey the following properties 1< k < n:[

n− 1
k

]
(q,h)

= qk
[
n

k

]
(q,h)

+ (1 +h [k − 1]q)

[
n

k − 1

]
(q,h)

(10)

and [
n− 1
k − 1

]
(q,h)

= (1 +h [k]q)
[n + 1]q
[k + 1]q

[
n

k

]
(q,h)

. (11)

In fact, these properties follow from the well known relations of theq-binomial coefficients:[
n + 1
k

]
q

= qk
[
n

k

]
q

+

[
n

k − 1

]
q
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and [
n + 1
k

]
q

= [n + 1]q
[k]q

[
n

k − 1

]
q

upon using(a)[k] = (a + [k − 1]q)(a)[k−1].
Now, we make the following remarks. Forh = 0 this is just theq-binomial formula as it

should be. Forq = 1, it reduces to theh-analogue Newton’s binomial formula (3) and (4) and
for (q = 1, h = 0) the usual one is recovered.

To conclude, we have obtained a more general Newton’s binomial formula in the(q, h)-
deformed quantum plane which reduces to the known one at some limits. This will therefore
lead to a more generalized analysis called(q, h)-analysis.
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