$(\boldsymbol{q}, \boldsymbol{h})$-analogue of Newton's binomial formula

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1999 J. Phys. A: Math. Gen. 322037
(http://iopscience.iop.org/0305-4470/32/10/019)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.105
The article was downloaded on 02/06/2010 at 07:26

Please note that terms and conditions apply.

ADDENDUM

(q, h)-analogue of Newton's binomial formula

H B Benaoum \dagger
Institut für Physik, Theoretische Elementarteilchenphysik, Johannes Gutenberg-Universität, 55099 Mainz, Germany

Received 26 October 1998

Abstract

In this addendum, the (q, h)-analogue of Newton's binomial formula is obtained in the (q, h)-deformed quantum plane which reduces for $h=0$ to the q-analogue. For $(q=1, h=0)$, this is just the usual one as it should be. Moreover, the h-analogue is recovered for $q=1$. Some properties of the (q, h)-binomial coefficients are also given. This result will contribute to an introduction of the (q, h)-analogue of the well known functions, (q, h)-special functions and (q, h)-deformed analysis.

The q-analysis is an extension of the ordinary analysis, by the addition of an extra parameter q. When q tends towards one the usual analysis is recovered. Such q-analysis appeared in the literature a long time ago \ddagger. In particular, a q-analogue of Newton’s binomial formula, well known functions like q-exponential, q-logarithm,... etc, the special functions arena's q-differentiation and q-integration have been introduced and studied intensively.

In [2], the h-analogue of Newton's binomial formula was introduced leading, therefore, to a new analysis, called h-analysis. In this addendum, I will go a step further by generalizing the work [2]. Indeed, an analogue of Newton's binomial formula is introduced here in the (q, h)-deformed quantum plane (i.e. (q, h) Newton's binomial formula which generalizes Schützenberger's formula [3] with an extra parameter h) leading, therefore, to a more generalized analysis, called (q, h)-analysis. With this generalization, the q-analysis, h-analysis and ordinary analysis are recovered respectively by taking $h=0, q=1$ and ($q=1, h=0$).

Newton's binomial formula is defined as follows:

$$
\begin{equation*}
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} y^{k} x^{n-k} \tag{1}
\end{equation*}
$$

where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ and it is understood here that the coordinate variables x and y commute, i.e. $x y=y x$. A q-analogue of (1), for the q-commuting coordinates x and y satisfying $x y=q y x$, first appeared in literature in Schützenberger [3], see also Cigler [4],

$$
(x+y)^{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{2}\\
k
\end{array}\right]_{q} y^{k} x^{n-k}
$$

where the q-binomial coefficient is given by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}
$$

[^0]\ddagger For historical details see [1]
with
$$
[j]_{q}=\frac{1-q^{j}}{1-q}
$$

The h-analogue has been introduced and defined in [2] as follows:

$$
(x+y)^{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{3}\\
k
\end{array}\right]_{h} y^{k} x^{n-k}
$$

provided that x and y satisfy to $[x, y]=h y^{2}$ and the h-binomial coefficient $\left[\begin{array}{l}n \\ k\end{array}\right]_{h}$ is given by

$$
\left[\begin{array}{l}
n \tag{4}\\
k
\end{array}\right]_{h}=\binom{n}{k} h^{k}\left(h^{-1}\right)_{k}
$$

where $(a)_{k}=\Gamma(a+k) / \Gamma(a)$ is the shifted factorial.
Now consider Manin's q-plane $x^{\prime} y^{\prime}=q y^{\prime} x^{\prime}$. By the following linear transformation (see [5] and references therein):

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
1 & \frac{h}{q-1} \\
0 & 1
\end{array}\right)\binom{x}{y}
$$

Manin's q-plane changes to

$$
\begin{equation*}
x y=q y x+h y^{2} . \tag{5}
\end{equation*}
$$

Even though the linear transformation is singular for $q=1$, the resulting quantum plane is well-defined.

Proposition 1. Let x and y be coordinate variables satisfying (5), then the following identities are true:

$$
\begin{align*}
& x^{k} y=\sum_{r=0}^{k} \frac{[k]_{q}!}{[k-r]_{q}!} q^{k-r} h^{r} y^{r+1} x^{k-r} \tag{6}\\
& x y^{k}=q^{k} y^{k} x+h[k]_{q} y^{k+1}
\end{align*}
$$

These identities are easily proved by successive use of (5).
Proposition $2((\boldsymbol{q}, \boldsymbol{h})$-binomial formula)). Let x and y be coordinate variables satisfying (5), then we have

$$
(x+y)^{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{7}\\
k
\end{array}\right]_{(q, h)} y^{k} x^{n-k}
$$

where $\left[\begin{array}{l}n \\ k\end{array}\right]_{(q, h)}$ are the (q, h)-binomial coefficients given as follows:

$$
\left[\begin{array}{l}
n \tag{8}\\
k
\end{array}\right]_{(q, h)}=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} h^{k}\left(h^{-1}\right)_{[k]}
$$

with $\left[\begin{array}{l}n \\ 0\end{array}\right]_{(q, h)}=1$ and

$$
\begin{equation*}
(a)_{[k]}=\prod_{j=0}^{k-1}\left(a+[j]_{q}\right) \tag{9}
\end{equation*}
$$

since by definition $[0]_{q}=0$.

Proof. This proposition will be proved by recurrence. Indeed for $n=1,2$, it is verified. Suppose now that the formula is true for $n-1$, which means

$$
(x+y)^{n-1}=\sum_{k=0}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{(q, h)} y^{k} x^{n-1-k}
$$

with $\left[\begin{array}{c}n-1 \\ 0\end{array}\right]_{(q, h)}=1$. To show this for n, let us first consider the following expansion:

$$
(x+y)^{n}=\sum_{k=0}^{n} C_{n, k} y^{k} x^{n-k}
$$

where $C_{n, k}$ are coefficients depending on q and h.
Then, we have

$$
\begin{aligned}
(x+y)^{n}= & (x+y)(x+y)^{n-1}=(x+y) \sum_{k=0}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{(q, h)} y^{k} x^{n-1-k} \\
& =\sum_{k=0}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{(q, h)} x y^{k} x^{n-1-k}+\sum_{k=0}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{(q, h)} y^{k+1} x^{n-1-k}
\end{aligned}
$$

Using the result of the first proposition, we obtain

$$
\begin{aligned}
(x+y)^{n}= & {\left[\begin{array}{c}
n-1 \\
0
\end{array}\right]_{(q, h)}+\sum_{k=1}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{(q, h)} q^{k} y^{k} x^{n-k} } \\
\quad & \quad+\sum_{k=1}^{n-1}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{(q, h)}\left(1+h[k]_{q}\right) y^{k+1} x^{n-1-k}+\left[\begin{array}{c}
n-1 \\
0
\end{array}\right]_{(q, h)} y x^{n-1}
\end{aligned}
$$

which yields, respectively,

$$
\begin{aligned}
& C_{n, 0}= {\left[\begin{array}{c}
n-1 \\
0
\end{array}\right]_{(q, h)}=} \\
& C_{n, 1}=q\left[\begin{array}{c}
n-1 \\
1
\end{array}\right]_{(q, h)}+\left[\begin{array}{c}
n-1 \\
0
\end{array}\right]_{(q, h)}=\left[\begin{array}{c}
n \\
1
\end{array}\right]_{(q, h)} \\
& \quad C_{n, k}=q^{k}\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]_{(q, h)}+\left(1+h[k-1]_{q}\right)\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{(q, h)}=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{(q, h)} \\
& \quad C_{n, n}=\left(1+h[n-1]_{q)}\left[\begin{array}{l}
n-1 \\
n-1
\end{array}\right]_{(q, h)}=\left[\begin{array}{c}
n \\
n
\end{array}\right]_{(q, h)} .\right.
\end{aligned}
$$

Moreover, the (q, h)-binomial coefficients obey the following properties $1<k<n$:

$$
\left[\begin{array}{c}
n-1 \tag{10}\\
k
\end{array}\right]_{(q, h)}=q^{k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{(q, h)}+\left(1+h[k-1]_{q}\right)\left[\begin{array}{c}
n \\
k-1
\end{array}\right]_{(q, h)}
$$

and

$$
\left[\begin{array}{l}
n-1 \tag{11}\\
k-1
\end{array}\right]_{(q, h)}=\left(1+h[k]_{q}\right) \frac{[n+1]_{q}}{[k+1]_{q}}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{(q, h)} .
$$

In fact, these properties follow from the well known relations of the q-binomial coefficients:

$$
\left[\begin{array}{c}
n+1 \\
k
\end{array}\right]_{q}=q^{k}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}+\left[\begin{array}{c}
n \\
k-1
\end{array}\right]_{q}
$$

and

$$
\left[\begin{array}{c}
n+1 \\
k
\end{array}\right]_{q}=\frac{[n+1]_{q}}{[k]_{q}}\left[\begin{array}{c}
n \\
k-1
\end{array}\right]_{q}
$$

upon using $(a)_{[k]}=\left(a+[k-1]_{q}\right)(a)_{[k-1]}$.
Now, we make the following remarks. For $h=0$ this is just the q-binomial formula as it should be. For $q=1$, it reduces to the h-analogue Newton's binomial formula (3) and (4) and for ($q=1, h=0$) the usual one is recovered.

To conclude, we have obtained a more general Newton's binomial formula in the (q, h) deformed quantum plane which reduces to the known one at some limits. This will therefore lead to a more generalized analysis called (q, h)-analysis.

Acknowledgments

The author would like to thank the DAAD for its financial support and the referee for his remarks.

References

[1] Exton H 1983 q-Hypergeometric Functions and Applications (Chichester: Ellis Horwood)
[2] Benaoum H B 1998 h-analogue of Newton's binomial formula J. Phys. A: Math. Gen. 31 L751
[3] Schützenberger M P 1953 Une interprétation de certaines solutions de l'équation fonctionnelle: $F(x+y)=$ $F(x) F(y)$ C. R. Acad. Sci. Paris 236352
[4] Cigler J 1979 Operatormethoden für q-Identitäten Monatsh. Math. 8887
[5] Cho S, Madore J and Park K S 1998 Noncommutative geometry of the h-deformed quantum plane J. Phys. A: Math. Gen. 312639

[^0]: \dagger E-mail address: benaoum@thep.physik.uni-mainz.de

